Info

Conclusion

Hybridization of foldamers not only leads to beautiful structures but actually can serve specific functions, such as information storage and transfer, but only if the hybridization is based on selective interactions. The design of artificial systems with specific and selective folding and hybridization properties remains an interesting and challenging goal for the chemical community. These artificial model systems will help us to better understand Nature and her elegant use of foldamers and their intermolecular interactions in many different applications. The more the underlying molecular principles are understood, the more sophisticated the deliberate use of artificial systems will be. This however requires a sound knowledge of noncovalent interactions, their strength and solvent dependence as well as their specificity and directionality as has been shown above for several examples. There is still a lot to learn despite all the progress that has been achieved in this area in the last few years. We will definitely see even more beautiful and intellectually challenging self-assembling foldamers with surprising properties and interesting applications in the future.

References

3 a) C. Dobson, A. Sali, M. Karplus, Angew. Chem. 1998, 110, 908-935; b) N. Ferguson, A. Fersht, Curr. Opin. Struc. Biol. 2003, 13, 75-81.

2 C. Branden, J. Tooze, Introduction to Protein Structure, Garland Publishing, New York, 1991.

1 L. Stryer, Biochemie, Spektrum Akademischer Verlag, Heidelberg, 2003.

8 a) S. Han, A. Bond, R. Disch, D. Holmes, J. Schulman, S. Teat, P. Vollhardt, G. Whitener, Angew. Chem. 2002, 114, 3357-3361; b) S. Han, R. Anderson, A. Bond, H. Chu, R. Disch, D. Holmes, J. Schulman, S. Teat, P. Vollhardt, G. Withener, Angew. Chem. Int. Ed. 2002, 41, 32273230.

5 B. Nolting, Protein Folding Kinetics, Springer-Verlag, Berlin, Heidelberg, 2006.

6 R. Copeland, Enzymes A Practical Introduction to Structure, Mechanism and Data Analysis, Wiley-VCH Verlag, 1996.

7 Even in fully flexible alkanes steric interactions such as the syn-pentane or the 1,3-allylic strain can induce specific conformations: a) R. W. Hoffmann, Angew. Chem. Int. Ed. 2000, 39, 2054-2070; b) R. W. Hoffmann, Chem. Rev. 1989, 89, 1841-1960.

Chemistry and Biology, Wiley-VCH Verlag, Weinheim, 2002.

9 a) C. Nuckolls, T. Katz, J. Am. Chem. Soc. 1998, 120, 9541-9544; b) C. Nuckolls, T. Katz, G. Katz, P. Collings, L. Castellanos, J. Am. Chem. Soc. 1999, 121, 79-88; c) S. Dreher, D. Weix, T. Katz, J. Org. Chem. 1999, 64, 3671-3678; d) K. Paruch, T. Katz, C. Incarvito, K.-C. Lam, B. Rhatigan, A. Rheingold, J. Org. Chem. 2000, 65, 7602-7608; e) T. Katz, Angew. Chem. 2000, 112, 1997-1999; f) K. Phillips, T. Katz, S. Jockusch, A. Lovinger, N. Turro, J. Am. Chem. Soc. 2001, 123, 11899-11907; g) D. Zhigang, T. Katz, J. Golen, A. Rheingold, J. Org. Chem. 2004, 69, 7769-7771.

10 a) M. Miyasaka, A. Rajca, M. Pink, S. Rajca, J. Am. Chem. Soc. 2005, 127, 13806-1307; b) S. Collins, A.

Grandbois, M. Vachon, J. Cote, Angew. Chem. 2006, 118, 2989-2992; c) D. Harrowven, I. Guy, L. Nanson, Angew. Chem. Int. Ed. 2006, 45, 22422245.

11 a) M. Stone, J. Fox, J. Moore, Org. Lett. 2004, 6, 3317-3320; b) J. Moore, C. Ray, Adv. Poly. Sci. 2005, 177, 91149; c) M. Stone, J. Heemstra, J. Moore, Acc. Chem. Res. 2006, 39, 11-20.

12 X. Yang, L. Yuan, K. Yamato, A. Brown, W. Feng, M. Furukawa, X. Zeng, B. Gong, J. Am. Chem. Soc. 2004, 126, 3148-3162.

14 a) L. Yuan, A. Sanford, W. Feng, A. Zhang, J. Zhu, H. Zeng, K. Yamato, M. Li, J. Ferguson, B. Gong, J. Org. Chem. 2005, 70, 10660-10669; b) A. Sanford, K. Yamato, X. Yang, L. Yuan, Y. Han, B. Gong, Eur. J. Biochem. 2004, 271, 1416-1425; c) L. Yuan, H. Zeng, K. Yamato, A. Sanford, W. Feng, H. Atreya, D. Sukumaran, T. Szyperski, B. Gong, J. Am. Chem. Soc.

2004, 126, 16528-16537.

15 a) H.-P. Yi, X.-B. Shao, J.-L. Hou, C. Li, X.-K. Jiang, Z.-T. Li, New J. Chem.

2005, 29, 1213-1218; b) C. Li, S.-F. Ren, J.-L. Hou, H.-P. Yi, S.-Z. Zhu, X.-K. Jiang, Z.-T. Li, Angew. Chem. Int. Ed. 2005, 44, 5725-5729.

16 W. Saenger, Principles of Nucleic Acid Structure, Springer-Verlag, New York, 1984.

17 a) W. Landschulz, P. Johanson, S. McKnight, Science, 1988, 240, 17591764: b) E. O'Shea, R. Rutkowski, P. Kim, Science, 1989, 243, 538-542; c) M. Weiss, T. Ellenberger, C. Wobbe, J. Lee, S. Harrison, K. Struhl, Nature 1990, 347, 575-578; d) T. Ellenberger, Curr. Opin. Struc. Biol. 1994, 4, 12-21.

18 a) H. Wendt, L. Leder, H. Harma, I. Jelesarov, A. Baici, H. Bosshard, Biochemistry 1997, 36, 204-213; b) A. Dragan, A. Privalov, J. Mol. Biol. 2002, 321(5), 891-908.

19 Y. Tang, G. Ghirlanda, W. Petka, T. Nakajima, W. DeGrado, D. Tirell, Angew. Chem. Int. Ed. 2001, 40, 14941496.

20 N. C. Yoder, K. Kumar, Chem. Soc. Rev. 2002, 31, 335-341.

21 V. Pércéc, M. Gloddé, G. Johansson, V. Balagurusamy, P. Héiney, Angew. Chem. Int. Ed. 2GG3, 42, 433S-4342.

22 K. Hoang, S. Mécozzi, Langmuir 2GG4, 20, 7347-7350.

23 L. Barthél-Rosa, J. A. Gladysz, Coord. Chem. Rev. l999, 190-192, 5S7-605.

24 N. Schnarr, A. Kénnan, J. Am. Chem. Soc. 2GGl, 123, 110S1-110S2.

25 L. Gonzaléz, J. J. Plécs, T. Albér, Nat. Struct. Mol. Biol. l996, 3, 510-515.

26 a) S. A. Bénnér, Acc. Chem. Res. 2GG4, 37, 7S4-797; b) E. T. Kool, Acc. Chem. Res. 2GG2, 35, 936-943.

27 H. Jiang, V. Maurizot, I. Huc, Tetrahedron 2GG4, 60, 10029-1003S.

28 V. Maurizot, J.-M. Léger, P. Guionnéau, I. Huc, Russ. Chem. Bull. Int. Ed. 2GG4, 53, 1572-1576.

29 S. Fernandez-Lopez, H.-S. Kim, E. Chol, M. Délgado, J. Granja, A. Khasanov, K. Kraéhénbuéhl, G. Long, D. Wéinbérgér, K. Wilcoxon, R. Ghadiri, Nature 2GGl, 421, 452-455.

30 V. Sémétéy, C. Didiérjéan, J.-P. Briand, A. Aubry, G. Guichard, Angew. Chem. Int. Ed. 2GG2, 41, 1S95-1S9S.

31 M. Amorín, L. Castédo, J. Granja, J. Am. Chem. Soc. 2GG3, 125, 2844-2S45.

32 A. Pétitjéan, L. Cuccia, J.-M. Léhn, M. Schmutz, Angew. Chem. Int. Ed. 2GG2, 41, 1195-1198.

33 a) V. Bérl, I. Huc, R. Khoury, M. Krisché, J.-M. Léhn, Nature 2GGG, 407, 720-723; b) V. Bérl, I. Huc, R. Khoury, J.-M. Léhn, Chem. Eur. J. 2GGl, 7, 2798-2809; c) V. Bérl, I. Huc, R. Khoury, J.-M. Léhn, Chem. Eur. J. 2GGl, 7, 2810-2820.

34 T. tén Caté, R. Sijbésma, Macromol. Rapid Commun. 2GG2, 23, 1094-1112.

35 M. Mayér, S. Nakashima, S. Zimmér-mann, Org. Lett. 2GG5, 7, 3005-3008.

36 C. Schmuck, W. Wienand, J. Am. Chem. Soc. 2GG3, 125, 452-459.

37 S. Schlund, C. Schmuck, B. Engels, J. Am. Chem. Soc. 2GG5, 127, 1111511124.

38 H. Zéng, X. Yang, A. Brown, S. Martinovic, R. Smith, B. Gong, Chem. Commun. 2GG3, 1556-1557.

39 C. S. Wilcox in Frontiers in Supramolecular Organic Chemistry and Photochemistry (Eds: H. J. Schneider,

40 H. Zeng, R. Miller, R. Flowers, B. Gong, J. Am. Chem. Soc. 2000, 122, 2635-2644.

41 H. Zeng, H. Ickes, R. Flowers, B. Gong, J. Org. Chem. 2001, 66, 35743583.

42 a) D. Williams, B. Bardsley, Angew. Chem. Int. Ed. 1999, 38, 1172-11193; b) C. Walsh, S. Fisher, I.-S. Park, M. Prahalad, Z. Wü, Chem. Biol. 1996, 3, 21-28.

43 a) P. Loll, J. Kaplan, B. Salinsky, P. Axelsen, J. Med. Chem. 1999, 42, 4714-4719; b) C. McComas, B. Crowley, D. Boger, J. Am. Chem. Soc. 2003, 125, 9314-9315.

44 a) W. L. J0rgensen, J. Pranata, J. Am. Chem. Soc. 1990, 112, 2008-2010; b) J. Pranata, S. G. Wierschke, W. L. J0rgensen, J. Am. Chem. Soc. 1991, 113, 2810-2819; c) W. L. J0rgensen,

D. L. Severance, J. Am. Chem. Soc. 1991, 113, 209-216; d) O. Lükin, J. Leszczynski, J. Phys. Chem. A 2002,

106, 6775-6782; e) O. Lükin, J. Leszczynski, J. Phys. Chem. A 2003,

107, 9251-9252.

45 C. Schmück, W. Wienand, Angew. Chem. Int. Ed. 2001, 40, 4363-4369.

46 E. Archer, M. Krische, J. Am. Chem. Soc. 2002, 124, 5074-5083.

47 H. Gong, M. Krische, J. Am. Chem. Soc. 2005, 127, 1719-1725.

48 a) D. Williams, M. Westwell, Chem. Soc. Rev. 1998, 27, 57-63; b) A. Davis, R. Wareham, Angew. Chem. Int. Ed. 1999, 38, 2978-2996.

49 a) C. Pigüet, M. Borovec, J. Hamacek, K. Zeckert, Coor. Chem. Rev. 2005, 249, 705-726; b) M. Albrecht, Top. Curr. Chem. 2004, 248, 105-139; c) M. Albrecht, Chem. Rev. 2001, 101, 3457-3497; d) G. Swiegers, T. Malefetse, Chem. Rev. 2000, 100, 3483-3537.

50 A. Oleksi, A. Blanco, R. Boer, I. Uson, J. Aymami, A. Rodger, M. Hannon, M. Coll, Angew. Chem. Int. Ed. 2006, 45, 1227-1231.

E. Yashima, Angew. Chem. Int. Ed. 2005, 44, 3867-3870; b) M Ikeda, Y. Tanaka, T. Hasegawa, Y. Fürüsho, E.

52 In contrast to Coulomb interactions between two point charges which are of course non-directional, charge interactions with organic molecules such as guanidinium cations are directional. This can be due to the formation of H-bond enforced ion pairs and/or the anisotropic solvation of such ions: P. E. Mason, G. W. Neilson, J. E. Enderby, M.-L. Saboungi, C. E. Dempsey, A. D. MacKerell, Jr., J. W. Brady, J. Am. Chem. Soc. 2004, 126, 11462-114710; For a general discussion of the directionality of noncovalent interactions see: J. P. Glusker, Top. Curr. Chem. 1998, 198, 1-56.

53 A. Bisson, F. Carver, D. Eggelston, R. Haltiwanger, C. Hunter, D. Livingston, J. McCabe, C. Rotger, A. Rowan, J. Am. Chem. Soc. 2000, 122, 8856-8868.

54 For reviews on cooperativity, see: a) D. H. Williams, E. Stephens, D. P. O'Brien, M. Zhou, Angew. Chem. Int. Ed. 2004, 43, 6596-6616; b) C. A. Hunter, S. Tomas, Chem. Biol. 2003, 10, 1023-1032; c) G. Ercolani,

J. Am. Chem. Soc. 2003, 125, 1609716103; d) S. L. Tobey, E. V. Anslyn, J. Am. Chem. Soc. 2003, 125, 1096310970.

55 G. Gabriel, B. Iverson, J. Am. Chem. Soc. 2002, 124, 15174-15175.

56 For reviews on hydrophobic contacts see: a) B. Widom, P. Bhimalapuram, K. Koga, Phys. Chem. Chem. Phys. 2003, 5, 3085-3093; b) L. R. Pratt, A. Pohorille, Chem. Rev. 2002, 102, 2671-2691; c) N. T. Southall, K. A. Dill, A. D. J. Haymet, J. Phys. Chem. B 2002, 106, 521-533.

58 Q.-Z. Zhou, X.-K. Jiang, X.-B. Shao, G.-J. Chen, M.-X. Jia, Z.-T. Li, Org. Lett. 2003, 5, 1955-1958.

59 M. Chubberly, B. Iverson, J. Am. Chem. Soc. 2001, 123, 7560-7563.

60 J.-L. Hou, M.-X. Jia, X.-K. Jiang, Z.-T. Li, G.-J. Chen, J. Org. Chem. 2004, 69, 6228-6237.

61 H. B. Gamper, K. Arar, A. Gewirtz, Y. M. Hou, Biochemistry 2006, 45. 6978-6986.

62 a) A. Eschenmoser, Chimia 2005, 59, 836-850; b) A. Eschenmoser, Chem. Commun. 2004, 1247-1252.

63 L. Zhang, A. E. Peritz, P. J. Carrol, E. Meggers, Synthesis 2006, 4, 645-653.

64 a) U. Diederichsen, Angew. Chem. Int. Ed. 1996, 35, 445-448; b) U. Diederichsen, Angew. Chem. Int. Ed. 1997, 36, 1886-1889.

65 For reviews on b-peptides see: a) D. Seebach, T. Kimmerlin, R. Sebesta, M. A. Campo, A. K. Beck, Tetrahedron

2004, 60, 7455-7506; b) R. P. Cheng, S. H. Gellman, W. F. DeGrado, Chem. Rev. 2001, 101, 3219-3232.

S. Gellman, U. Diederichsen, Angew. Chem. Int. Ed. 2003, 42, 4395-4399;

b) P. Chakraborty, U. Diederichsen, Chem. Eur. J. 2005, 11, 3207-3216.

67 T. Raguse, J. Lai, P. LePlae, S. Gellman, Org. Lett. 2001, 3, 39633966. The structure of this amphiphilic 14-helix depends very much on the influence of the solvent and the used buffer. In 10 mM TRIS with a pH of 8.0 the system self-associates most as a hexamer at a concentration of 1.7 mM. If an acetate buffer is used and the pH is adjusted to a value of 3.8 no clear classification can be done, except for the monomer at a concentration of 0.3 mM.

68 H.-C. Yang, S.-Y. Lin, H.-C. Yang, C.-L. Lin, L. Tsai, S.-L. Huang, I. Chen, C.-H. Chen, B.-Y. Jin, T.-Y. Luh, Angew. Chem. Int. Ed. 2006, 45, 726730.

69 a) L. Brunsveld, B. Folmer, E. Meijer R. Sijbesma, Chem. Rev. 2001, 101, 4071-4097; b) F. Hoeben, P. Jonkheijm, E. Meijer, A. Schenning, Chem. Rev. 2005, 105, 1491-1546;

c) A. Schenning, P. Jonkeijm, E. Peeters, E. Meijer, J. Am. Chem. Soc. 2001, 123, 409-416.

70 a) F. Wurthner, S. Yao, U. Beginn, Angew. Chem. Int. Ed. 2003, 115, 3368-3371; b) A. Lohr, M. Lysetska, F. Wurthner, Angew. Chem. Int. Ed.

2005, 44, 5071-5074.

71 J. Hartgerink, E. Beniash, S. Stupp, Science 2001, 294, 1684-1688.

72 a) K. Sugiyasu, S.-I. Tamaru, M. Masayuki, D. Berthier, I. Huc, R. Oda, S. Shinkai, Chem. Commun.

2002, 1212-1213; b) A. Sugawara, S. Yamane, K. Akiyoshi, Macromol. Rapid. Commun. 2006, 27, 441-446; c) W. Zhang, S. Liao, F. Cui, Chem. Mater. 2003, 15, 3221-3226; d) T. Iwatsubo, K. Sumaru, T. Kanamori, T. Shinbo, T. Yamaguchi, Biomacro-molecules 2006, 7, 95-100.

73 a) V. Percec, A. E. Dulcey, M. Peterca, M. Illies, J. Ladislaw, B. M. Rosen, U. Edlund, P. A. Heiney, Angew. Chem. Int. Ed. 2005, 44, 6516-6521; b) M. Peterca, V. Percec, A. E. Dulcey, S. Nummelin, S. Korey, M. Illies, P. A. Heiney, J. Am. Chem. Soc. 2006, 128, 6713-6720.

74 D. M. Noll, T. M. Mason, P. S. Miller, Chem. Rev. 2006, 106, 277-301.

75 a) W. Zielinski, L. Orgel, Nature 1987, 327, 346-347; b) I. Kozlov, P. Politis, A. van Aerschot, R. Busson, P. Herdewijn, L. Orgel, J. Am. Chem. Soc. 1999, 121, 2653-2656.

76 a) D. Sievers, G. von Kiedrowski, Chem. Eur. J. 1998, 4, 629-641; b) L. Eckardt, K. Naumann, W. Pankau, M. Rein, M. Schweitzer, N. Windhab, G. von Kiedrowski, Nature, 2002, 420, 286; c) G. von Kiedrowski, Angew. Chem. Int. Ed. 1986, 25, 932-935.

77 a) D. Lee, J. Granja, J. Martinez, K. Severin, R. Ghadiri, Nature 1996, 382, 525-528; b) K. Severin, D. H. Lee,

J. A. Martinez, M. R. Ghadiri, Chem. Eur. J. 1997, 3, 1017-1024; c) A. Saghatelian, Y. Yokobayashi, K. Solthani, M. R. Ghadiri, Nature 2001, 409, 797-801.

78 a) I. Gosh, J. Chmielewski, Curr. Op. Chem. Biol. 2004, 8, 640-644; b) N. Paul, G. F. Joyce, Curr. Opin. Chem. Biol. 2004, 8, 634-639; c) X. Li, J. Chmielewski, J. Am. Chem. Soc. 2003, 125, 1182-11821; d) R. Issac, Y.-W. Ham, J. Chmielewski, Curr. Opin. Chem. Biol. 2001, 11, 458-463.

2004, 116, 4956-4979.

0 0

Post a comment