Protection Against Hightemperature Injury

Heat Injury

Lethality at high temperature is a function of both temperature and time; the higher the temperature, the shorter the exposure time needed to kill the insect (Fig. 2). But, injury can manifest itself in more subtle forms at less extreme temperatures. For example, temperatures that prevent reproduction are lower than the temperatures that cause immediate mortality. At still less severe temperatures, adults are reproductively functional but emergence may be delayed or occur at the "wrong" time of day.

Heat shock can also produce developmental abnormalities known as phenocopies (developmental abnormalities resembling mutations but caused by environmental conditions), a phenomenon especially well known for the fruit fly, Drosophila melanogaster. Flies heat shocked during embryogenesis or metamorphosis yield interesting phenocopies with aberrant adult bristle shapes, colors, and wing formations. Which defect is observed is dependent upon the age of the fly at the time of exposure. The sensitive period for the production of each phenocopy is brief, usually less than 2 h. The various phenocopies are generated by disruption of a heat-sensitive developmental process that is specific to a particular developmental window. For example, heat shock can shut down phenol oxidase, the enzyme needed for melanin production. If heat shock is thus administered during the interval when this enzyme is needed to generate the black color normally associated with bristles, the blond-bristle phenocopy will be produced instead.

At the cellular level, a number of abnormalities are elicited in response to heat stress. These include declines in hemolymph pH; disruption of the normal pattern of protein synthesis; loss of conformational integrity of RNA, DNA, and protein; and deformation of the cellular membrane. Many cell processes are thus vulnerable to injury. Which cell process is the primary site of thermal wounding is still not clear, but two models have been proposed. One model suggests that the plasma membrane is the primary site of thermal wounding. In this model, disruption of the plasma membrane sets in motion a cascade of events involving inactivation of membrane proteins and subsequent leakage of K+ out of the cell and movement of Ca2+ and Na+ into the

Time at Treatment Temperature (h)

FIGURE 2 Mortality is a function of both temperature and duration of exposure, as demonstrated by the survival curves for S. crassipalpis. The flies were exposed to four different temperatures for various durations several days before adult emergence and survival was based on success of adult emergence. [Reproduced, with permission, from Yocum and Denlinger, (1994). Copyright Blackwell Science.]

cell. This loss of the cell's bioelectrical properties leads to a breakdown in cell metabolism, loss of homeostasis, and finally death. An alternative model also focuses on the plasma membrane but suggests that the subsequent protein denaturation is the critical cause of death. Denatured protein adheres to the chromatin and restricts enzymatic access to the DNA. The cell eventually dies as a consequence of an increase in DNA damage. But, it is also evident that an enzyme will lose its metabolic function at a fairly low level of heat stress, long before denaturation is complete. Thus, it is difficult to point to any single factor as the cause of death because high temperature adversely affects many aspects of the cell or organism's physiology simultaneously.

Thermotolerance

Thermotolerance (tolerance of high temperature) can be increased several ways. (1) Genetic adaptation: Differences in thermotolerance can be detected in diverse geographic populations, as well as in laboratory lines that have been selected for heat-shock survival. (2) Long-term acclimation: Rearing individuals for long durations at high temperatures can result in a striking increase in thermotolerance. (3) Rapid heat hardening: A brief exposure to an intermediately high temperature provides protection from injury at a more severe temperature.

Rapid heat hardening is the best studied response. Heat shock is the thermal injury caused by a sudden increase in temperature. This form of injury can be reduced dramatically if an organism is first exposed to an intermediate temperature (rapid heat hardening). For example, the flesh fly, Sarcophaga

FIGURE 3 Thermotolerance can be demonstrated by the higher survival rates noted in flies that were first exposed to a moderately high temperature. In this example, based on S. crassipalpis, flies reared at 25°C and then transferred directly a few days before adult emergence to 45°C (open circles) survived poorly as indicated by success of adult emergence. By contrast, flies that were first exposed to 40°C (solid circles) survived exposure to 45°C much better. [Reproduced, with permission, from Chen et al. (1990), copyright Springer-Verlag.]

FIGURE 3 Thermotolerance can be demonstrated by the higher survival rates noted in flies that were first exposed to a moderately high temperature. In this example, based on S. crassipalpis, flies reared at 25°C and then transferred directly a few days before adult emergence to 45°C (open circles) survived poorly as indicated by success of adult emergence. By contrast, flies that were first exposed to 40°C (solid circles) survived exposure to 45°C much better. [Reproduced, with permission, from Chen et al. (1990), copyright Springer-Verlag.]

crassipalpis, can tolerate only a brief time at 45°C if it is transferred there directly from 25°C, but survival at 45°C is greatly extended (Fig. 3) if the flies are first exposed to 40°C for 2 h. The thermotolerance that protects against heat-shock injury is acquired quickly, within minutes, reaches a maximum within a few hours, and then decays rather slowly over several days.

Heat-shock proteins are the best known contributors to thermotolerance. In response to heat stress, the normal pattern of protein synthesis is suppressed, and concurrently several new proteins, the heat-shock proteins, are synthesized. These proteins are classified according to their molecular mass and in D. melanogaster include a high-molecular-mass protein (82 kDa), members of the 70-kDa family, and small heat-shock proteins with molecular masses of 22, 23, 26, and 27 kDa. The most highly expressed heat-shock proteins, members of the heat-shock protein 70 (Hsp70) family, are highly conserved. The gene that encodes Hsp70 is over 50% identical in bacteria and D. melanogaster. In response to heat stress Hsp70 levels in the cell may increase more than 1000-fold.

Though heat shock was the first stress known to elicit synthesis of these proteins, it is now evident that many other forms of stress (e.g., heavy metals, alcohols, metabolic poisons, aberrant proteins, cold shock, desiccation) can elicit synthesis of these same proteins. It is thus clear that these proteins are involved in diverse stress responses.

For years the linkage between heat-shock proteins and thermotolerance was based strictly on correlation between the presence of the proteins and the expression of thermotol-erance, but more recently the linkage has been strengthened with new experimental evidence. Cultured D. melanogaster cells and whole flies transformed with extra copies of the Hsp70 gene acquire thermotolerance more rapidly than normal cells or flies, while cells transformed with Hsp70 antisense genes acquire thermotolerance more slowly.

How do the heat-shock proteins contribute to thermotolerance? Members of the Hsp70 family function as molecular "chaperones" that facilitate the process of protein folding and assembly. Hsp70 can reduce high-temperature damage by interacting with susceptible proteins to prevent their interactions with other reactive surfaces, thus helping to maintain the integrity of proteins present in the cell.

Although heat-shock proteins have received the most attention in studies of thermotolerance, other molecules, including sugars such as trehalose and polyols such as glycerol and sorbitol, are also suspected of contributing to the protective mechanism.

Thermosensitivity

While it is widely appreciated that previous exposure to an elevated temperature can generate tolerance to high temperature (thermotolerance, as discussed earlier), it is less well appreciated that some high temperatures can decrease an insect's ability to survive a subsequent high-temperature exposure. It is this loss of tolerance that is referred to as thermosensitivity. For example, S. crassipalpis appears to readily survive a 1-h exposure to 45°C, but if the fly is subjected to a second high-temperature pulse 1 day later, the effect will be lethal, even if the second pulse is considerably less severe, e.g., 35°C. Such observations suggest that some form of injury caused by the first challenge made the flies considerably more vulnerable to the second heat pulse. Without the second challenge, the initial injury can apparently be repaired, but the problem arises if the insect is challenged a second time before it has fully recovered. The temperatures that produce thermosensitivity are generally above the temperatures that generate thermotolerance.

An intriguing practical implication of thermosensitivity is that the pattern of administering a thermal stress has important consequences for an insect's survival. Two relatively modest pulses of high temperature may be just as effective in causing death as a single pulse of a higher temperature. From an economic perspective, this type of wounding may require less energy input than needed to administer a single pulse of a higher temperature.

Bee Keeping

Bee Keeping

Make money with honey How to be a Beekeeper. Beekeeping can be a fascinating hobby or you can turn it into a lucrative business. The choice is yours. You need to know some basics to help you get started. The equipment needed to be a beekeeper. Where can you find the equipment you need? The best location for the hives. You can't just put bees in any spot. What needs to be considered when picking the location for your bees?

Get My Free Ebook


Post a comment