Insect Ranges

The geographical area in which a species regularly occurs and maintains itself through natural reproduction is called its distribution area or range. Species ranges differ in size from individual small islands (or some other island habitats, like an isolated mountaintop, a particular lake, or some individual cave) to entire continents to the entire Northern or Southern Hemisphere or even to almost global distributions. The term "range" is also used to describe the distribution of geographical races (subspecies) and supraspecific taxa, such as genera and families.

Within their ranges, insects are not randomly or evenly distributed. Specimens are usually clumped and restricted to habitats fulfilling the species' particular ecological requirements. Abiotic factors, or the presence of particular food or host plants, but also the absence of predators, parasites, competitors, and others, may be important in determining their occurrence. Where suitable habitats are at some distance, more or less isolated subpopulations, which only occasionally interbreed, result. However, as long as gene flow is not completely disrupted there is a single, continuous range. Within-range aspects, such as fine-scale patterns of distribution and clinal or discrete variation in morphology, physiology, or other characters across ranges, occur but are not considered here. Similarly, seasonal or diurnal differences of specimen distribution, habitat changes between different life stages, and other intrinsic details occur but are not dealt with here.

Species that occur in several spatially separate, reproductively isolated populations are called disjunct. Disjunctions arise because ranges experience extensions and restrictions that are often induced by a combination of factors. Active and passive animal dispersal, changing ecological conditions, and changes of the earth's surface—for example, by sea transgressions (e.g., level changes), orogenesis (e.g., mountain building), or continental drift— may be involved. Because of this complexity, size and shape of ranges are not generally related to insect size and mobility. To provide some examples from butterflies that are strong flyers, the birdwing, Ornithoptera aesacus, is endemic to small Obi Island in the Maluku Islands, whereas the peacock, Inachis io, is endemic to Eurasia.

Dispersal active dispersal Random movement of individuals in a growing population leads by itself to some peripheral range extension until eventually the entire inhabitable space is occupied. Small-scale ecological change and normal insect activity lead to range extensions, or to restrictions, if conditions deteriorate. Although some active dispersal is involved in all range extensions, the term is most often applied to longdistance movements. These are often observed in migratory species, but only the area in which a species regularly reproduces is called its range. The area in which it appears only during migration is separately recorded. Long-distance migrations may be by single specimens or by large numbers and may or may not lead to temporary or lasting range extensions.

Under favorable conditions, the population density of some insects such as in the notorious migratory locusts, can become high enough to induce emigration of large numbers. Similar situations occur in dragonflies, for example, the European fourspotted chaser (Libellula quadrimaculata), and in other species. However, migrants usually move within the general range of the species, attaining only temporary and marginal range extensions. In Europe, some butterflies—for example, the painted lady and the red admiral (Vanessa cardui and V atalanta)—regularly migrate to north of the Alps, and some Mediterranean moths (e.g., the death's head hawk moth, Acherontia atropos, the convolvulus hawk moth, Agrius convolvuli, and Daphnis nerii) do the same in warm summers. However, photoperiodic cues or winter temperatures do not permit lasting establishment in central Europe. Seasonal mass migrations are performed by the monarch butterfly, Danaus plexippus, and long-distance dispersal of individual butterflies is often observed. Danaus established itself in New Zealand, Australia, and elsewhere but only after humans introduced milkweeds, the food plants that had originally been absent from these areas.

Active dispersal is most easily noticed in spectacular forms such as those mentioned earlier. In most insects, the numbers moving and the distances traveled remain unknown but may be important. For example, many insects, such as hoverflies (Diptera: Syrphidae) and moths (Noctuidae) but also large numbers of dragonflies, were observed migrating across some high alpine passes in Switzerland. On most days, thousands were trapped in malaise traps or light traps.

passive dispersal Passive dispersal or transport of insects occurred naturally long before the involvement of human traffic. For range extensions, passive dispersal may be equally or more important than active movements. Transport in the pelt or plumage of larger animals occasionally occurs and may be important for the colonization of, for example, isolated ponds. Flooding streams and rivers move huge amounts of riparian organic debris plus the associated fauna downstream, sometimes over large distances. In large, tropical rivers, floating trees with a diverse fauna or entire vegetation islands have been observed traveling substantial distances, eventually also over sea. There is now also widespread agreement that the post-Pleistocene (re)colonization of parts of Scandinavia, Iceland, and Greenland was through drifting ice carrying soil and associated biota from refugial areas in western Europe.

Species with limited flight capacity and strong flyers alike are exposed to air transport. Collections made on ships stationed on the open sea or from airplanes or the outfall on high mountains show that amazingly large numbers of insects and spiders travel as aerial plankton. These air-transported species are mainly small organisms and not only those spending part of their life in some resistant inactive state, such as rotifers and tardigrades. Apparently through passive aerial dispersal, some of the smallest animals have some of the largest ranges, and some very small species are even of global distribution. Air transport ("ballooning") may form part of distributional strategies, for example, in spiders and also some first-instar Lepidoptera that produce silk strands, facilitating being caught and carried by moving air. Examples can be found in the arrival and partly the subsequent establishment of a number of butterflies and probably also other insects in New Zealand during the last 150 years.

However, the importance of passive transport has sometimes been overestimated. For example, at a time when no other explanations seemed to exist, transport by westerly storms encircling the southern end of the world in the "Roaring Forties" latitudes was thought to have caused continental disjunctions that can today more convincingly be explained by continental drift.

Various quarantine measures are presently taken against unintended human transport of insects, but the problem is an old one. For example, when the Vikings came to North America, they contracted human fleas. Preserved fleas were found in Viking settlements on Greenland whence they were apparently carried to Europe, where human fleas first appeared around the year 1000. Several soil-dwelling beetles were introduced to North America with ship ballast collected in Europe at sites where the particular beetles abound. Their survival today indicates suitable ecological conditions in America, but only some of the beetles dispersed widely. Others spread easily, such as the Colorado potato beetle (Leptinotarsa decemlineata), which expanded its restricted natural range over much of North America and over Europe, where it was also introduced. As with the monarch butterfly, the intentional introduction of the food plant had prepared its way.

Bee Keeping

Bee Keeping

Make money with honey How to be a Beekeeper. Beekeeping can be a fascinating hobby or you can turn it into a lucrative business. The choice is yours. You need to know some basics to help you get started. The equipment needed to be a beekeeper. Where can you find the equipment you need? The best location for the hives. You can't just put bees in any spot. What needs to be considered when picking the location for your bees?

Get My Free Ebook


Post a comment