Insect Pigments

Eat Sleep Burn

Best Weight Loss Programs That Work

Get Instant Access

Insects can make most of their pigments (some apparently from waste products that were historically simply stored or excreted), whereas others must come from their diets. Several general classes of pigments are recognized. These differ in the color ranges they generate and in the precursors used to produce them. As they share the same underlying mechanism of color production (selective absorption of some wavelengths of light), they can be reviewed with a simple list.

Melanins are black, brown, tan, or reddish brown pigments whose production and deployment involve a complex system of gene products and biochemical pathways. They are often present as granules in the exocuticle, although in lepidopteran scales they may be diffusely distributed, and they are responsible for most of the dark patterning in the body and wings. Eumelanin, the black form, commonly requires dopamine and tyrosine as precursors, while the chemistry of phaeomelanin, the brown, tan, or reddish brown form, is less well understood and may require the incorporation of additional kinds of molecules into the compound.

Pterins are white, yellow, or red pigments derived from a purine, guanosine triphosphate. Some function as cofactors of enzymes important in growth and differentiation; they may help control these processes. They are also cofactors in ommochrome (see later) production and often occur with these latter pigments, for example in the screening-pigment cells in the ommatidia of the eyes.

Ommochromes are red, yellow, or brown pigments derived from tryptophan, which they may serve to use up if it is in excess supply during times of high protein turnover (e.g., in metamorphosis). They usually occur in granules coupled with proteins and, as mentioned above, are present as screening pigments in the eyes as well as in the colors on the body. In insects displaying Tyndall blue (see later), they may serve as background pigments to absorb extraneous light.

Tetrapyrroles are pigments commonly classified into two groups. The first, the ring-shaped porphyrins, may add and incorporate iron to become hemes, which in turn may link to proteins to become (1) cytochromes, proteins important in cellular respiration in all higher organisms, or (2) hemoglobin, the protein that vertebrates and other organisms use to facilitate oxygen transport to their cells. Of necessity, all insects make cytochromes. Some that live in habitats of very low oxygen tension may make hemoglobin as well.

The other class of tetrapyrroles, the bilins, may in themselves be green or may link with proteins to make blue chromoproteins. These may in turn link with carotenoid pigments (see later) to make many insect greens.

Papiliochromes are yellow and red/brown pigments found only in butterflies of the family Papilionidae.

Quinone pigments are pigments of uncertain origin found in the Homoptera. Anthraquinones are found in members of the family Coccidae, in which they give red and sometimes yellow coloration; these include cochineal dye of historical importance. Aphins are characteristic of aphids, to whom they impart a purple or black coloration.

Carotenoids are yellow, orange, red, and, if bound to the appropriate protein, blue pigments that are made from dietary carotenes and their oxidized derivatives, xanthophylls. In combination with blue pigments (often bilins) they may produce an insect green, insectoverdin. They are also sources of retinal, a component of the photopigment of the eye.

Flavonoids are plant-derived pigments that produce cream or yellow colors, particularly in the Lepidoptera. Like the carotenoids, they cannot be synthesized but must come from the diet.

FIGURE 2 Scattering of light to produce Tyndall blue. When full-spectrum (white) light encounters structures or particles of the right dimensions, the shorter wavelengths are preferentially scattered in all directions, including toward the eye of the observer, who sees a blue color. The longer wave light passes through unscattered (and therefore bypasses the observer).

FIGURE 2 Scattering of light to produce Tyndall blue. When full-spectrum (white) light encounters structures or particles of the right dimensions, the shorter wavelengths are preferentially scattered in all directions, including toward the eye of the observer, who sees a blue color. The longer wave light passes through unscattered (and therefore bypasses the observer).

Was this article helpful?

0 0
4 Steps To Permanent Weight Loss

4 Steps To Permanent Weight Loss

I can't believe I'm actually writing the book that is going to help you achieve the level of health and fitness that you always dreamed of. Me, little scrawny sickly Darlene that was always last picked in gym class. There's power in a good story here so get this book now.

Get My Free Ebook


Post a comment