Environmental Regulation

Obligatory diapause is not elicited by environmental cues. It simply occurs in each generation when the insect reaches a certain developmental stage. In the example of the gypsy moth, diapause occurs when the embryo has completed its development and the first instar is nearly ready to hatch. With the exception of a few aberrant individuals, the gypsy moth always halts development at this time, regardless of the environmental cues they receive. In this example, environmental conditions, mainly temperature, determine when diapause should be terminated but play no role in programming the insect to enter diapause.

This is in contrast to the majority of insects, those with a facultative diapause, which use environmental cues to decide whether to enter diapause. If a certain environmental cue is received during a sensitive period the insect will enter diapause, but if this cue is not received or not received at the correct time, development will proceed without interruption. This design feature enables an insect to track seasonal changes and regulate its development accordingly. Many insects can produce multiple generations each year, and insects with a facultative diapause frequently produce spring and summer generations without diapause and then produce a generation in late summer or autumn that enters an overwintering diapause. The environmental cue used most widely to signal diapause induction is photoperiod, but temperature, food quality, and other factors may contribute to the decision.

FIGURE 1 Photoperiodic response curves for pupal diapause induction in two populations of the flesh fly S. bullata from Illinois and Missouri. Fly cultures were maintained at 25°C under the range of daylengths indicated, and the incidence of pupal diapause was recorded. The critical daylength in this case is 13.5 h of light/day. (Reproduced, with permission, from Denlinger, 1972.)

FIGURE 1 Photoperiodic response curves for pupal diapause induction in two populations of the flesh fly S. bullata from Illinois and Missouri. Fly cultures were maintained at 25°C under the range of daylengths indicated, and the incidence of pupal diapause was recorded. The critical daylength in this case is 13.5 h of light/day. (Reproduced, with permission, from Denlinger, 1972.)


Seasonal change in daylength has all the design features that are desirable in a reliable indicator that can be used for predicting upcoming periods of inclemency. It is mathematically accurate and can be used to effectively foretell the advent of winter or other seasons that are to be avoided. The developmental period that is sensitive to photoperiod usually occurs far in advance of the actual diapause stage. Thus, diapause is not usually an immediate reaction to photoperiod but occurs in response to signals received at an earlier stage. Such early programming offers the insect a period to prepare for diapause by sequestering food reserves and making other preparatory adjustments prior to the actual onset of the developmental arrest.

For many of the insects that overwinter in diapause in the temperate regions, short daylengths dictate the expression of diapause. In the example shown in Fig. 1, flesh flies reared at long daylengths, those longer than 13.5 h, develop without interruption, but at daylengths shorter that 13.5 h, the majority enter diapause as pupae. The daylength marking the transition, 13.5 h in this example, is referred to as the critical daylength. The shape of the photoperiod response curve shown in Fig. 1 is common for temperate species that overwinter in diapause, but the curves may have different forms. For some species, especially those that undergo a summer estivation and reproduce in the autumn, long rather than short daylengths may be used to program diapause. Other species may respond to only a narrow range of daylengths for diapause induction, whereas daylengths both shorter and longer avert diapause.

Near the equator, seasonal changes in daylength are progressively less pronounced; yet insects living as close as 5°

north or south of the equator are still capable of using photoperiodic cues to regulate diapause. Diapause still exists in insects living in equatorial regions, but cues derived from temperature, rainfall, and food quality take precedence over photoperiod.

The photoperiodic response controlling diapause varies among geographic populations. Populations living at lower latitudes characteristically respond to shorter critical daylengths. An increase in latitude of 5° results in an increase in critical daylength of approximately 30 min. This pattern of variation is closely related to the latitudinal temperature gradient and is well documented in species of Drosophila that inhabit the Japanese archipelago. The species that occur in the subtropical zone exhibit only a weak diapause or no diapause at all. As one moves northward in the archipeligo, the diapause response becomes more pronounced and the flies use longer critical daylengths for diapause induction.

The period sensitive to photoperiod usually does not encompass the entire prediapause period, but instead a shorter interval, usually well in advance of the actual diapause stage. For example, the pupal diapause in the flesh fly S. crassipalpis is programmed during a photosensitive stage that includes the final 2 days of embryonic development and the first 2 days of larval life. In the tobacco hornworm, Manduca sexta, a species that also has a pupal diapause the photosensitive stage is much longer; it begins during embryonic development and continues through the feeding phase of the fifth instar. In the silkworm, B. mori, embryonic diapause is programmed during the mother's period of embryonic development. This timing of the photosensitive stage thus facilitates the channeling of development toward diapause at an early stage and allows sufficient time for the preparative phase of diapause.

The duration of diapause, often called diapause depth, also may depend on photoperiod. For example, in the lacewing, C. carnea, diapause depth is controlled by photoperiod in such a way that the adult diapause is deeper when it is induced earlier in the autumn, thus preventing an untimely termination of diapause before the onset of winter. And, in the tobacco hornworm, M. sexta, the duration of pupal diapause is a function of the number of short days the embryo and larva have received. Exposure to a few short days, such as would occur in mid- to late summer, results in a long diapause, while exposure exclusively to short days, an event that could occur only in early autumn, results in a short diapause. Such qualitative responses to photoperiod allow the insect to fine tune its development to fit the changing season.

Photoperiodic information is perceived through a receptor in the brain, integrated and stored in the brain, and then translated into the endocrine events that control the induction and maintenance of diapause. The location of the photore-ceptor responsible for measurement of daylength has been studied in relatively few insects, but in most of them the compound eyes and ocelli are not the conduit for this information. Surgical destruction of these visual centers or coating the eyes with an opaque paint usually does not inter fere with the photoreception involved in the programming of diapause. The photoperiodic signal appears to impinge directly on the brain, but the exact location of these extraretinal photoreceptors has not been elucidated. As in many other plants and animals, the photoperiodic response in insects is primarily a blue-light response. Cryptochromes, proteins involved in photoperiodic responses in a diverse array of organisms, are present in insects and are likely to be implicated in this response. Several important clock genes have been identified in insects, but thus far their involvement in photoperiodism has not been well established.

The role for photoperiod in the environmental regulation of diapause is mainly in the inductive phase of diapause. There are a few species that use daylength as a direct environmental cue for diapause termination. More commonly, photoperiod may influence the rate of diapause development, which in turn does impact the duration of diapause, but frequently diapause development proceeds at a rate determined by temperature rather than photoperiod.


Temperature provides another important seasonal cue for diapause induction, but the daily fluctuations in temperature mean that it is less reliable than photoperiod in this regard. Frequently, a short-day response is enhanced by low temperature. For example, the maximum diapause response observed for flesh flies shown in Fig. 1 is approximately 80%. But, this was for flies reared at 25°C, and if the temperature is lowered to 18°C, the diapause incidence is elevated to nearly 100%. In these flies the critical photoperiod is not influenced by temperature, but in some insects the critical photoperiod may shift as well.

Near the equator, where seasonal changes in daylength are too subtle to be used as environmental cues, temperature may replace photoperiod as the primary environmental regulator of diapause, as it does for flesh flies living in East Africa: daylength has no influence on the expression of diapause, but instead low daytime temperatures experienced in July and August are used to program the flies for pupal diapause.

A period of chilling may be essential for diapause termination. Diapausing insects often cannot resume development or reproduction immediately upon transfer to favorable conditions but require a period of chilling. Although some insects do not absolutely require chilling before initiating development many will terminate diapause more quickly if they have first been chilled for a few months.

Bee Keeping

Bee Keeping

Make money with honey How to be a Beekeeper. Beekeeping can be a fascinating hobby or you can turn it into a lucrative business. The choice is yours. You need to know some basics to help you get started. The equipment needed to be a beekeeper. Where can you find the equipment you need? The best location for the hives. You can't just put bees in any spot. What needs to be considered when picking the location for your bees?

Get My Free Ebook

Post a comment