## Soft glassy rheology and structural damping

Remarkably, in the limit that the frequency is small (compared to 0) and the imposed deformations are small (such that the rate for hopping out of wells is dominated by x), Sollich's theory leads directly to the structural damping equation (Eq. 3.2). The data reported above establish firmly that the mechanical behavior of cells conforms well to Eq. 3.2. If Sollich's theory and underlying ideas are assumed to apply to the data reported here, then the parameters in Eq. 3.2 (x, G0, 0) can be...

## Roger D Kamm

Massachusetts Institute of Technology Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo The Edinburgh Building, Cambridge cb2 2ru, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title www.cambridge.org 9780521846370 Cambridge University Press 2006 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any...

## Principles of continuum models

A continuum cell model provides the displacement, strain, and stress fields induced in the cell, given its initial geometry and material properties, and the boundary conditions it is subjected to (such as displacements or forces applied on the cell surface). Laws of continuum mechanics are used to solve for the distribution of mechanical stress and deformation in the cell. Continuum cell models of interest lead to equations that are generally not tractable analytically. In practice, the...

## O

Oosawa and colleagues found that actin polymerizes in two phases (a) an unfavorable nucleation phase involving an actin trimer and (b) a rapid assembly phase in which actin monomers add to both barbed and pointed ends. In the presence of excess ATP, actin does not polymerize to equilibrium but to a 'treadmilling' steady-state in which monomers continuously add to the barbed end and fall off of the pointed end. reactions. Oozawa also assumed that spontaneous...

## N J Z u2

Where Z is the frequency variable to integrate over and P denotes a principal value integral, one can then calculate the real part of the compliance. Knowing both real and imaginary parts of the compliance, one then finds the complex shear modulus via where R is the probe bead radius. This procedure is explained in detail in Schnurr etal. (1997). The shear modulus can also be derived from position fluctuation data in a different way. After first calculating the mean square displacement as a...

## James L McGrath and C Forbes Dewey Jr

ABSTRACT This chapter focuses on the mechanical structure of the cell and how it is affected by the dynamic events that shape the cytoskeleton. We pay particular attention to actin because the actin structure turns over rapidly (on the order of tens of seconds to tens of minutes) and is strongly correlated with dynamic events such as cell crawling. The chapter discusses the way in which actin and its associated binding proteins provide the dominant structure within the cell, and how the actin...

## Info

The elastic properties of actin filaments and microtubules are approximately consistent with a prediction based on the force of van der Waals attraction between two surfaces (J. Howard, 2001). Persistence length (lp) and bending stiffness (Kb ) are related through the expression lp Kb kB T. Bending stiffness and Young's modulus (E) are related through the expression Kb EI 4 a4 E for a solid rod of circular cross-section with radius a, and I 4 (a J a4) for a hollow cylinder with inside and...

## Biphasic solidfluid models of cell mechanics

Viscoelastic behavior in cells can arise from both flow-dependent (fluid-solid interactions and fluid viscosity) and flow-independent mechanisms (for example, intrinsic viscoelasticity of the cytoskeleton). Previous studies have described the cytoplasm of solid-like cells as a gel or as a porous-permeable, fluid-saturated meshwork (Oster, 1984 Oster, 1989 Pollack, 2001) such that the forces within the cell exhibit a balance of stresses arising from hydrostatic and osmotic pressures and the...

## FC Mac Kintosh

ABSTRACT Most plant and animal cells possess a complex structure of filamentous proteins and associated proteins and enzymes for bundling, cross-linking, and active force generation. This cytoskeleton is largely responsible for cell elasticity and mechanical stability. It can also play a key role in cell locomotion. Over the last few years, the single-molecule micromechanics of many of the important constituents of the cytoskeleton have been studied in great detail by biophysical techniques...

## Experimental measurements of intracellular mechanics

ABSTRACT Novel methods to measure the viscoelasticity of soft materials and new theories relating these measurements to the underlying molecular structures have the potential to revolutionize our understanding of complex viscoelastic materials like cytoplasm. Much of the progress in this field has been in methods to apply piconewton forces and to detect motions over distances of nanometers, thus performing mechanical manipulations on the scale of single macromolecules and measuring the...