Conclusion Of Creatine Kinase

Electronics Repair Manuals

Schematic Diagrams and Service Manuals

Get Instant Access

Our recent research provides novel molecular-anatomical evidence that (i) CRT at the BBB and iBRB is involved in regulating the creatine concentration in the brain and retina and that (ii) local creatine is preferentially synthesized in the glial cells in the brain and retina. These findings provide important information that will increase our understanding of the mechanism of creatine supply and creatine use in the brain and retina and of creatine supplementation in patients with creatine deficiency syndromes. In particular, the BBB and iBRB play essential roles in maintaining energy homeostasis not only in terms of supplying energy sources (glucose and lactate), but also for supplying an energy 'buffer' (creatine). Although oral creatine supplementation is reported to be an effective treatment for AGAT- and GAMT-deficient patients (Stockler et al., 1994, 1996), high doses of creatine given over a long period of time only partially replenish brain creatine pools. In this regard, the creatine concentration in the brain and retina appears to be dependent on BBB and iBRB functions.

Figure 5 summarizes the putative cellular mechanisms of creatine transport, biosynthesis and use in the brain and retina. This leads to a novel insight that the creatine/phosphocreatine shuttle system is based on an intricate relationship between the BBB, iBRB, glia, and neurons (photoreceptor cells) to maintain and ensure energy homeostasis in the brain and retina.

High Creatine Kinase

Figure 5. Schematic diagram of the functional relationships between creatine transport at the BBB and iBRB, creatine biosynthesis, and its use for brain and retinal energy homeostasis. The role of CRT in the abluminal membrane of the BBB and iBRB (isolated black squares) in the supply of creatine to the brain and retina remains unclear. CK, creatine kinase; CRT, creatine transporter; GAMT, S-adenosyl-L-methionine:guanidinoacetate N-methyltransferase; GLUT, glucose transporter; MCT, monocarboxylate transporter.

Figure 5. Schematic diagram of the functional relationships between creatine transport at the BBB and iBRB, creatine biosynthesis, and its use for brain and retinal energy homeostasis. The role of CRT in the abluminal membrane of the BBB and iBRB (isolated black squares) in the supply of creatine to the brain and retina remains unclear. CK, creatine kinase; CRT, creatine transporter; GAMT, S-adenosyl-L-methionine:guanidinoacetate N-methyltransferase; GLUT, glucose transporter; MCT, monocarboxylate transporter.

Was this article helpful?

0 0

Responses

Post a comment